Inhibition of uracil DNA glycosylase sensitizes cancer cells to 5-fluorodeoxyuridine through replication fork collapse-induced DNA damage
نویسندگان
چکیده
5-fluorodeoxyuridine (5-FdU, floxuridine) is active against multiple cancers through the inhibition of thymidylate synthase, which consequently introduces uracil and 5-FU incorporation into the genome. Uracil DNA glycosylase (UDG) is one of the main enzymes responsible for the removal of uracil and 5-FU. However, how exactly UDG mediates cellular sensitivity to 5-FdU, and if so whether it is through its ability to remove uracil and 5-FU have not been well characterized. In this study, we report that UDG depletion led to incorporation of uracil and 5-FU in DNA following 5-FdU treatment and significantly enhanced 5-FdU's cytotoxicity in cancer cell lines. Co-treatment, but not post-treatment with thymidine prevented cell death of UDG depleted cells by 5-FdU, indicating that the enhanced cytotoxicity is due to the retention of uracil and 5-FU in genomic DNA in the absence of UDG. Furthermore, UDG depleted cells were arrested at late G1 and early S phase by 5-FdU, followed by accumulation of sub-G1 population indicating cell death. Mechanistically, 5-FdU dramatically reduced DNA replication speed in UDG depleted cells. UDG depletion also greatly enhanced DNA damage as shown by γH2AX foci formation. Notably, the increased γH2AX foci formation was not suppressed by caspase inhibitor treatment, suggesting that DNA damage precedes cell death induced by 5-FdU. Together, these data provide novel mechanistic insights into the roles of UDG in DNA replication, damage repair, and cell death in response to 5-FdU and suggest that UDG is a target for improving the anticancer effect of this agent.
منابع مشابه
Genomically Incorporated 5-Fluorouracil that Escapes UNG-Initiated Base Excision Repair Blocks DNA Replication and Activates Homologous Recombination.
5-Fluorouracil (5-FU) and its metabolite 5-fluorodeoxyuridine (FdUrd, floxuridine) are chemotherapy agents that are converted to 5-fluorodeoxyuridine monophosphate (FdUMP) and 5-fluorodeoxyuridine triphosphate (FdUTP). FdUMP inhibits thymidylate synthase and causes the accumulation of uracil in the genome, whereas FdUTP is incorporated by DNA polymerases as 5-FU in the genome; however, it remai...
متن کاملResistance to fluorodeoxyuridine-induced DNA damage and cytotoxicity correlates with an elevation of deoxyuridine triphosphatase activity and failure to accumulate deoxyuridine triphosphate.
Deoxyuridine triphosphate (dUTP) misincorporation and uracil misrepair have long been implicated in fluoropyrimidine-induced DNA damage; however, the enzymatic activities responsible for these lesions have not been previously identified as critical determinants of overall sensitivity to the antitumor effects of these agents. The purpose of this study was to determine whether differences in urac...
متن کاملRPA physically interacts with the human DNA glycosylase NEIL1 to regulate excision of oxidative DNA base damage in primer-template structures.
The human DNA glycosylase NEIL1, activated during the S-phase, has been shown to excise oxidized base lesions in single-strand DNA substrates. Furthermore, our previous work demonstrating functional interaction of NEIL1 with PCNA and flap endonuclease 1 (FEN1) suggested its involvement in replication-associated repair. Here we show interaction of NEIL1 with replication protein A (RPA), the hete...
متن کاملSmall interfering RNA-mediated suppression of dUTPase sensitizes cancer cell lines to thymidylate synthase inhibition.
Uracil misincorporation into DNA and its associated misrepair have been implicated as contributing components of cytotoxicity resulting from treatment with thymidylate synthase inhibitors. dUTPase, which eliminates dUTP from the DNA biosynthetic pathway, opposes uracil misincorporation; therefore, elevation of this enzyme in cancer cells may contribute to drug resistance. To validate the potent...
متن کاملResistance to Fluorodeoxyuridine-induced DNA Damage and Cytotoxicity Correlates with an Elevation of Deoxyuridine Triphosphatase Activity and Failure to Accumulate Deoxyuridine Triphosphate1
Deoxyuridine triphosphate (dUTP) misincorporation and uracil misrepair have long been implicated in fluoropyrimidine-induced DNA damage; however, the enzymatic activities responsible for these lesions have not been previously identified as critical determinants of overall sensitivity to the antitumor effects of these agents. The purpose of this study was to determine whether differences in urac...
متن کامل